Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables

نویسندگان

  • Xinjiong Fan
  • Weiqu Liang
  • Yanfang Li
  • He Li
  • Xiaolong Liu
چکیده

BACKGROUND Pyrethroids are potentially harmful to living organisms and ecosystems. Thus, concerns have been raised about pyrethroid residues and their persistence in agricultural products. To date, although several pyrethroid-hydrolyzing enzymes have been cloned, very few reports are available on pyrethroid-hydrolyzing enzymes with cold adaptation, high hydrolytic activity and good reusability, indispensable properties in practical bioremediation of pyrethroid-contaminated vegetables. RESULTS Here, a novel gene (est684) encoding pyrethroid-hydrolyzing esterase was isolated from the Mao-tofu metagenome for the first time. Est684 encoded a protein of 227 amino acids and was expressed in Escherichia coli BL21 (DE3) in soluble form. The optimum temperature was 18 °C. It maintained 46.1% of activity at 0 °C and over 50% of its maximal activity at 4-35 °C. With the goal of enhancing stability and recycling biocatalysts, we used mesoporous silica SBA-15 as a nanometer carrier for the efficient immobilization of Est684 by the absorption method. The best conditions were an esterase-to-silica ratio of 0.96 mg/g (w/w) and an adsorption time of 30 min at 10 °C. Under these conditions, the recovery of enzyme activity was 81.3%. A large improvement in the thermostability of Est684 was achieved. The half-life (T1/2) of the immobilized enzyme at 35 °C was 6 h, 4 times longer than the soluble enzyme. Interestingly, the immobilized Est684 had less loss in enzyme activity up to 12 consecutive cycles, and it retained nearly 54% of its activity after 28 cycles, indicating excellent operational stability. Another noteworthy characteristic was its high catalytic activity. It efficiently hydrolyzed cyhalothrin, cypermethrin, and fenvalreate in pyrethroid-contaminated cucumber within 5 min, reaching over 85% degradation efficiency after four cycles. CONCLUSIONS A novel cold-adapted pyrethroid-hydrolyzing esterase was screened from the Mao-tofu metagenome. This report is the first on immobilizing pyrethroid-hydrolyzing enzyme on mesoporous silica. The immobilized enzyme with high hydrolytic activity and outstanding reusability has a remarkable potential for bioremediation of pyrethroid-contaminated vegetables, and it is proposed as an industrial enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of immobilized microbial cells in biological treatment of contaminated effluent with aromatic compounds: a review article

Background and Objective: Bioremediation of contaminants by living microorganisms is a favorable method for elimination or degradation of pollutants to less harmful substances. In the recent decades, cell immobilization technique has been applied to improve biodegradation efficiency and also overcome to free cells disadvantages. The purpose of this review article is to investigate the applicati...

متن کامل

Degradation of Alkanes in Contaminated Sites

Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by ...

متن کامل

Degradation of Alkanes in Contaminated Sites

Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by ...

متن کامل

Bioremediation of organic contaminated soils*

The term bioremediation covers a wide variety of engineered systems which utilize microorganisms to degrade, detoxify and immobilize organic contaminants. These systems include: l solid-phase treatment using unlined iand treatment systems or prepared bed bioreactors, l slurry-phase treatment systems completed either in-place or within tanks or impoundments, and l in situ treatment systems. Bior...

متن کامل

Microbial Decontamination of Spices Using Cold Plasma

Most of spices are produced using traditional systems. In unsanitary conditions, spices can contain large numbers of pathogenic microbes such as bacteria, molds and yeasts. Some microorganisms are known as human pathogens, which need disinfection mechanisms that minimize their potential harms to active substances in spices. Use of contaminated spices in foods can significantly decrease the shel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017